The “Teplo XXI veka” company
29.05.2014
TS1 type thermal hydrodynamic pumps are modern, high-efficiency, self-contained, energy-saving, ecologically friendly heating, heat supply and hot water supply systems. They are intended for:
- autonomous heating residential, office, sport, industrial and storage buildings, greenhouse, etc;
- heating of water for: household and technological purposes, bathhouses, laundries, pools, etc.
Thermal hydrodynamic pumps have many advantages: generate pollution-free heat, can be used in seismically danger zones, they are explosion- and fire-proof, irreplaceable in mountain area with terrace site development, can work as a complex with wind power stations and small hydrostations. In the nighttime the pumps with heat accumulators allow to use free electric power at the minimum prices.
Commercial products (TU 3631-001-78515751-2007, Certificate of conformity # ROSS RU.AYa46.V12043) -TS1 type thermal hydrodynamic pumps - represent the standard induction motor of 3000rpm, supply voltage 380V, skid-mounted with a heat-generator, transforming mechanical energy into thermal energy. They are completely ready for connection to a new or existing heating system, and the design and dimensions of the thermal hydrodynamic pump simplify its disposing and mounting in a heat supply unit. For reliability it is recommended to apply at least two thermal hydrodynamic pumps in a heat supply unit. Preliminary selection of the thermal installations power applied for heating is executed by the specification - 1kW supplied thermal energy per 10sq.m of heated area (for Moscow region rated air temperature – 26°С within a week). Selection of the thermal hydrodynamic pump power is executed by the specification - 1kW of the electric motor installed capacity per 30sq.m of heated area. Thermal hydrodynamic pumps must heat conditional typical (matching the requirements of Construction regulations) residential, household, cultural-entertaining premises, premises of industrial-economic purposes, etc., of the volume: TS1-055 – 5180m3, TS1-075 – 7060m3, TS1-090 – 8450m3, TS1-110 – 10200m3 (the thermal hydrodynamic pump marking specifies the installed capacity of the used electric motor).
Necessary temperature mode can be maintained in heated premises. For example, 20 - 22°C for living spaces, 15 - 18°C – industrial spaces, 8 - 12°C – warehouse. Temperature mode regulating is made by setting the heat carrier temperature range on the control panel. As heat carrier heats up to the set maximum temperature the thermal hydrodynamic pump turns off, as heat carrier cools to the minimum set temperature – turns on. It is generated exactly as much thermal energy as much heat loss of a heated object. During winter periods the operating time is more and less for autumn-spring periods. For the average heating season (for Moscow region it makes 210 days) the equipment operates 25-30% of time (see Table 1). Therefore we apply factor Koper. = 0.3 to preliminary calculation of financial expenditure for heating.
Automatics allow to make change-over of a temperature mode within a minute. In the evening a duty engineer can lower temperature in premises and before the beginning of working day set comfortable temperature in premises again. It allows additionally lower heating cost at least on 35%.
Table 1.
Organization
Building material
Volume of
Premises
Cube. m.
Object
purpose
Average temperature
degree
Electric power expenditure for a month, kW/hour
Consumed
Thermal power
per hour
KW
volume heated
1 kW, cubic m
Branch “Plastimex M”
Brick
20 433
Workshop
18-20
45 455
63,13
323,66
OOO “Rubej”
Sandwich-panels
22 000
Warehouse
8-10
20 000
27,78
792,00
ZAO “Spline-Centre”
Brick
7 000
Office
20-22
15 000
20,83
336,00
PBOYuL Zamotaeva
Metallic hangar
4 500
Repair shop
16-18
8 171
11,35
391,56
OOO “Tuba”
Sandwich-panels
26 500
Department
18-20
54 000
75,00
353,33
OOO “Alex Terminal”
Sandwich-panels “Vental”
3 850
Office
22-24
40 318
44,29
569,78
28 400
Warehouse
8-10
OOO “Sever Svet”
(Cherepovets)
Sandwich-panels
7 200
Production department
15
10 117
13,74
523,81
OOO “Steklocenter”
(Kaliningrad)
Brick
6 000
Workshop
15-18
3 556
4,94
1214,80
Note: the table is made according to the users’ references presented on the website: http://www.ratron.su, section “Products” /“References”.
-2-
Table 1 presents real expenses of the users only for one type - energy carrier (electric power) costs. Comparison of costs for heating and heat supply, which we conducted on the basis of six-years operating experience, show that energy carrier costs with thermal hydrodynamic pumps are lower than with heating coil and electrode boilers in 3-5 times, diesel fuel – in 8-10 times, gas-fired boilers – on 15%, central heating – in 3-5 times. Besides, multitariff electric counters are installed in many places. For example, the “Dubna” holiday camp (Sergiev Posad, Moscow region), where thermal hydrodynamic pumps work, has five-tariff counters. Water for heating and HWS heats up in an accumulative tank at the minimum tariff that sharply reduces the costs.
Maintenance costs for heating, heat supply and HWS with thermal hydrodynamic pumps much lower than with gas-fired boilers. Thermal hydrodynamic pumps are fire- and explosion-proof. They are simple in maintenance, an electrician without special training can serve them. Gas boiler-houses must be served by the specially qualified personnel, numerous controlling bodies regularly check an equipment condition, etc.
Maintenance of diesel and gas boiler-houses attached to a building is prohibited in some regions of Russia. We recommend to re-equip such boiler-houses with thermal hydrodynamic pumps as it minimizes capital outlays and also lowers maintenance costs.
Since a stage of licensing documentation reception capital outlays for construction of a gas boiler-house are more in many times than for thermal hydrodynamic pumps. Design of a gas boiler-house is more expensive, auxiliary equipment nomenclature is more difficult and more in terms of quantity, so-called “binding” including chimney. Expenses for gas pipeline from a main to a boiler-house, which cost can be more than the boiler cost, are separate charges. At the same time we regularly see users who could not lay a gas tube or heating main at all due to existing buildings.
The above-stated definitely leads to conclusion that construction of a heat supply station with thermal hydrodynamic pumps considerably cheaper and faster than construction of a gas boiler-house, and in some cases construction of a gas boiler-house is simply impossible.
Some not much competent persons express an opinion on higher reliability of heat sypply with gas and diesel boiler-houses in case of power cutoff. However, they forget that even solid-fuel boiler-houses have automatics and pump equipment, which require electricity. For socially important objects diesel-generators ensuring equipment functioning at off-design situations are provided. The Diesel-generator must have high capacity to maintenance operation of thermal hydrodynamic pumps. Off-design situations do not happen often, therefore economy with a normal heat supply will repay with interest a little higher cost of the diesel-generator.
Thermal hydrodynamic pumps can be applied not only in stationary heat supply stations. Practically always fast-erected constructions of modular type are used in construction. Heating of such constructions is possible and necessary to make with building block heat supply station (BBHSS), which construction includes one or two thermal hydrodynamic pumps, circulating pumps, expansion tanks, filters, sensors, automatics, etc. We developed design of a typical BBHSS, and some modules in modification - with one and three TS1-055 installations – were manufactured. Full-scale tests and design adjustment of a pilot BBHSS for heating of derricks have been successfully conducted for 2007/2008 heating season.
The “Teplo XXI veka” company is awarded with a “Saint George” statuette, one platinum, five gold and one silver medals for development and manufacture of thermal hydrodynamic pumps. Sales manager of our organization - V.A.Kim has won the “Vision of the future” nomination in the “Ideas factory” – TV competition on new power-efficient, energy-saving technologies, where tens designs have been presented.
More information about the company can be seen on the web-site http://www.ratron.su
I hope for cooperation!
Sincerely, deputy director ________________________
Urpin Konstantin